一、試卷評閱的總體情況本學期文科類數(shù)學期末考試仍按現(xiàn)用全國五年制高等職業(yè)教育公共課《應(yīng)用數(shù)學基捶教學,和省校下發(fā)的統(tǒng)一教學要求和復(fù)習指導(dǎo)可依據(jù)進行命題。經(jīng)過閱卷后的質(zhì)量分析,全省各教學點匯總,卷面及格率達到了54%,平均分54.1分,較前學期有很大的提高,答卷還出現(xiàn)了不少高分的學生,這與各教學點在師生的共同努力和省校統(tǒng)一的教學指導(dǎo)和管理是分不開的。為進一步加強教學管理,
總結(jié)各教學點的教學經(jīng)驗不斷提高教學質(zhì)量,現(xiàn)將本學期卷面考試的質(zhì)量分析,發(fā)給各教學點,望各教學點以教研活動的方式,開展討論、分析、總結(jié)教學,確保教學質(zhì)量的穩(wěn)步提高。二、考試命題分析1、命題的基本思想和命題原則命題與教材和教學要求為依據(jù),緊扣教材第五章平面向量;第七章空間圖形;第八章直線與二次曲線的各知識點,同時注意到我省的教學實際學和學生的認識規(guī)律,注重與后繼課程的教學相銜接。以各章的應(yīng)知、應(yīng)會的內(nèi)容為重點,立足于基礎(chǔ)概念、基本運算、
……(新文秘網(wǎng)http://jey722.cn省略647字,正式會員可完整閱讀)……
%左右,其中大部份學生對書寫向量遺漏箭頭,部分學生將第3題的答案(-9,3)答成(9,-3)或(-9,-3)等。符號是不清楚的,反映出部份學生對向量的線性運算并非完全掌握。第4~7題涉及立體幾何問題,主要考查線面關(guān)系,面面關(guān)系。答對率70%左右,其它學生主要是空間概念不清,不能確定線面間、平面間的位置關(guān)系。多數(shù)對異面直線的位置關(guān)系不清楚。第8~13題涉及解析幾何的問題,考查曲線方程中的待定系數(shù),直線方程,點到直線的距離問題,情況尚好,答對率70%左右。第11~13題反而答錯率占65%左右,主要反映出學生對各種二次曲線的標準方程混淆不清,對幾何要素的位置掌握不好,突出表現(xiàn)在對二次曲線的幾何性質(zhì)掌握較差,不牢固。單項選擇題:學生一般得分為12—18分第1題選對的占80%以上,學生對平面的基本性質(zhì)中的公理及推論掌握較好。第2題選對的占70%左右,學生對兩向量垂直與兩向量數(shù)量積之間的關(guān)系掌握較好。答錯較多的是第4和第6題,其次是第5題。第5題多數(shù)錯選(a)或(b),可見學生對一般圓方程用公式求圓心和半徑不熟悉,同時用配方法化圓的一般方程為圓的標準方程,求圓心和半徑也掌握不好。特別是第4題平行坐標軸,坐標變換竟有33%的學生錯選(b)或不選(空白),可見不少學生對坐標軸平移引起坐標變換的新概念并不清楚,對新、舊坐標的概念也不清楚。第6題不少學生錯選(b),反映出學生對向量平行和垂直的條件混淆,判斷兩向量相等的條件也不明確,才會出現(xiàn)如此的錯誤。第三題:(1)題是考查異面直線的成的角及長方體對角的計算。對本題的解答約80%的學生能找到異面直線a1c1與bc所成的角,但有30%~40%的學生不習慣用反正切函數(shù)表示角度,反而用反正弦或反余弦函數(shù)表示角度,教學中應(yīng)引起跑的重視。計算長方體的對角線長僅有20%的學生會用簡捷方法“長方體的對角線的平方等于長、寬、高的平方和”。其余學生計算較繁瑣。(2)題是考查證明三點共線問題。約有80%的學生采用不同的方法證明,有用解析法的,也有用向量法的,也有用平面幾何與解析幾何綜合知識證明的“三點連線中,兩線之和等于第三線則三點共線”,反映出各教學點對該問題給出了多種證明法和思路,值得提倡。第(3)題考查根據(jù)不同的己知條件選用向量數(shù)量積的表達式。第四題:1題主要考查動點的軌跡方程,學生的解答,多出現(xiàn)兩種方法,按軌跡滿足橢圓定義求解或按求軌跡方程的四大步驟求解,但解答中又出現(xiàn)不少錯誤。第五題:1題是考查由給定雙曲線的條件求它的標準方程和漸近線方程,但不少學生將雙曲線中的參數(shù)a,b與隨圓中的參數(shù)a、b、c混為一談,對漸逐近線方程掌握不好,不能根據(jù)漸逐線的位置,寫出漸近線的方程。2題主要考查用向量法證明四邊形是矩形的方法,但不少學生隨心所意,反而用解析幾何的方法去證明,嚴格講這是錯誤的,應(yīng)該引起重視。有的學生在證明中邏輯混亂,邏輯推理敘述不嚴密,在矩形的證明中,用“垂直證明垂直”。對向量的知識掌握不牢固,求向量的坐標時,差值的順序不對,導(dǎo)致計算錯誤。第六題:本題是一道立體幾何題,主要考查的知識點一是兩平面垂直的性質(zhì),二是直線與平面所成的角。本題評閱結(jié)果,有近60%的考生得滿分,這些學生是掌握了考查的知識點,解題思路清晰,能迅速地用兩平面垂直的性質(zhì),證明δabc和δbdc是直角三角形,求出bc和cd后,又用三角函數(shù)計算cd與平面所成的角。有的學生構(gòu)造三角形思路 ……(未完,全文共2859字,當前僅顯示1818字,請閱讀下面提示信息。
收藏《數(shù)學試卷質(zhì)量分析》)